POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Scientific data visualization			
		Course	
Field of study		Year/Semester	
Mechanical Engineering		1/2	
Area of study (specialization)	Profile of study	
Virtual Design Engineering		general academic	
Level of study		Course offered in	
Second-cycle studies		Polish	
Form of study		Requirements	
full-time		compulsory	
		Number of hour	
Lecture	Laboratory classes	Other (e.g. online)	
15	15		
Tutorials	Projects/seminars		
Number of credit points			
2			
		Lecturers	
Responsible for the course/lecturer:		Responsible for the course/lecturer:	
dr hab. inż. Witold Stankiew	ICZ		
email: Witold.Stankiewicz@	put.poznan.pl		
tel. 665 2167			
Wydział Inżynierii Mechanica	znej		
ul. Piotrowo 3 60-965 Pozna	ń		

KNOWLEDGE: student has knowledge of information technology and knowledge of mechanic engineering, including engineering graphics and CAD

SKILLS: student knows how to use CAx software, including performing simple FEM simulations; can integrate the information obtained and interpret it

SOCIAL COMPETENCES: the student is aware of the responsibility for the tasks performed, understands the need to acquire new knowledge.

Course objective

Students acquire knowledge of systems and techniques related to data visualization and analysis. They

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

will learn about selected issues in the field of computational geometry (3D modeling, curves and parametric surfaces, triangulation) and the basics of rendering.

Course-related learning outcomes

Knowledge

K2_W07: Has knowledge of modeling, including the creation of a physical model, CAE (Computer Aided Engineering) systems, analysis of the results of simulations of complex mechanical systems using numerical methods; knows the basic concepts of modern methods of optimal design and their practical engineering applications.

K2_W10: Has knowledge in the field of CAD / CAM (Computer Aided Design / Computer Aided Manufacturing) systems, 3D geometric modeling methods, model visualization methods and procedures for using models for virtual product testing. Has knowledge in the field of integration of information flows, the use of IT tools supporting design; has the basics of knowledge to optimize construction solutions.

K2_W04: Has extended and in-depth knowledge enabling to link technical mechanics and strength of materials with computer techniques.

Skills

K2_U11: Can interpret natural and technical phenomena; can perform a simple calculation related to data processing, write a simple computer program to perform more complex calculations.

K2_U14: Is able to describe and basically use engineering software systems to support design, describe 3D geometric modeling methods, model and data visualization methods, and procedures for using models for virtual product testing.

K2_U01: Can integrate obtained information, interpret it and critically assess, as well as draw conclusions and formulate and comprehensively justify opinions.

K2_U04: Is able to determine the directions of further learning and implement the process of selfeducation, as well as direct others in this field

Social competences

K2_K01: Understands the need for lifelong learning; can inspire and organize the learning process of others.

K2_K04: Can adequately set priorities for implementation of the tasks specified by him or others.

Methods for verifying learning outcomes and assessment criteria Learning outcomes presented above are verified as follows: Oral and written tests. Assessment of individually made projects.

Programme content

2D and 3D graphs. Geometry. 3D model. Parametric curves and surfaces. Data sources (numerical calculations, experiment, medical diagnostics). Visualisation. Techniques for data presentation - scalar

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

and vector fields, sections, isosurfaces, streamlines / web glyphs / vectors, volumetric visualization. Selection / determination of variables for visualization. Vorticity, linear integral convolution. Overview of the possibilities of visualization systems on the example of the selected software (e.g. ParaView). Data processing pipeline and filters (including those created in Python).

Applications of rendering in scientific visualization on the example of the Blender program.

Teaching methods

Information / problem lecture, Case study, laboratory with elements of project.

Bibliography

Basic

U. Ayachit. The ParaView Guide. Community Edition. http://paraview.org/paraview-guide/

http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/introduction-to-scientific-visualization-tutorial/

M. Gągolewski, M. Bartoszuk, A. Cena. Przetwarzanie i analiza danych w języku Python. PWN, Warszawa, 2016. ISBN: 9788301189402

Additional

https://en.wikipedia.org/wiki/Scientific_visualization

https://en.wikipedia.org/wiki/Line_integral_convolution

http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/paraview/

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,0
Classes requiring direct contact with the teacher	33	1,0
Student's own work (literature studies, preparation for laboratory	27	1,0
classes/tutorials, preparation for tests/exam, project preparation) ¹		

¹ delete or add other activities as appropriate